- 25.03.2019
- 849 Просмотров
- Обсудить
В попытке «демократизировать ИИ» ученые Массачусетского технологического института нашли способ использовать искусственный интеллект для гораздо более эффективного обучения систем машинного обучения — то есть, нейросетей. Они надеются, что новый алгоритм, позволяющий сэкономить время и средства, позволит ограниченным в ресурсах исследователям и компаниям автоматизировать проектирование нейронных сетей. Другими словами, сокращая время и затраты, они могли бы сделать эту технику ИИ более доступной.
Новая область искусственного интеллекта включает использование алгоритмов для автоматического проектирования нейросетей, которые являются более точными и эффективными, чем разработанные человеческими инженерами. Но эта технология нейронно-архитектурного поиска (neural architecture search, NAS) является затратной с точки зрения вычислительной мощности.
Самый современный алгоритм NAS, недавно разработанный Google для работы на куче графических процессоров, потратил 48 000 GPU-часов для создания одной сверточной нейронной сети, которая используется для классификации изображений и задач обнаружения. У Google есть возможность параллельно запускать сотни графических процессоров и другого специализированного оборудования параллельно, но такое недоступно для многих других.
Алгоритм NAS, представленный Массачусетским технологическим институтом, может напрямую обучать специализированные сверточные нейросети (CNN) для целевых аппаратных платформ — при работе с массивным набором данных изображений — всего за 200 GPU-часов, что значительно расширяет потенциальное использование этих типов алгоритмов.
По мнению ученых, ограниченные в ресурсах исследователи и компании могли бы извлечь выгоду из алгоритма в виде экономии времени и затрат. Общей целью является «демократизация ИИ», говорит соавтор исследования Сонг Хан, доцент кафедры электротехники и компьютерных наук Microsystems Technology Laboratories в MIT. «Мы хотим, чтобы как эксперты по искусственному интеллекту, так и неспециалисты эффективно проектировали архитектуры нейросетей с помощью простого решения, которое быстро работает на конкретном оборудовании».
Однако он добавляет, что такие NAS-алгоритмы никогда не заменят инженеров-людей. «Цель состоит в том, чтобы избавиться от повторяющейся и утомительной работы, связанной с проектированием и усовершенствованием архитектуры нейронных сетей».
Что ж, все это только ускоряет наступление общего искусственного интеллекта. Кстати, почитайте наш материал про Демиса Хассабиса, основателя DeepMind — одной из самых многообещающих компаний в области ИИ. Источник
Подписывайтесь на наш Telegram, «X(twitter)» и «Zen.Yandex», «VK», «OK» и новости сами придут к вам..
Подписывайтесь на наш Telegram-канал, «X(twitter)» и «Zen.Yandex», «VK», «OK» и новости сами придут к вам..
Похожие материалы
Будь-те первым, поделитесь мнением с остальными.
Читать далее